On the comparison of front-ends for robust speech recognition in car environments

نویسندگان

  • Angel de la Torre
  • Dominique Fohr
  • Jean Paul Haton
چکیده

In this paper we compare several front-ends for Automatic Speech Recognition systems operating under noise conditions. The analyzed front-ends are based on standard MFCC parameterizations and include methods to compensate the effect of the noise over the representation of the speech signal. Three different compensation methods are considered in this work: Cepstral Mean Normalization, Spectral Subtraction and a novel method that we propose, based on a Statistical Compensation of the noise in the logarithmic Filter Bank Output domain. The considered front-ends are evaluated with Automatic Speech Recognition experiments using speech acquired in car environments. Making use of the French VODIS speech database (recorded in several cars running in real traffic situations) we have carried out recognition experiments to compare the different front-ends. The results show that the front-end including the Statistical Compensation of the noise outperforms the other considered methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust parameters for speech recognition based on subband spectral centroid histograms

In this paper we propose a new speech parameterization framework that efficiently combines frequency and magnitude information from the short-term power spectrum of speech. This is achieved through computation of subband spectral centroid histograms (SSCH). Relationship between the proposed method and auditory based speech parameterization methods is discussed. An experimental study on an autom...

متن کامل

A new perceptually motivated MVDR-based acoustic front-end (PMVDR) for robust automatic speech recognition

Acoustic feature extraction from speech constitutes a fundamental component of automatic speech recognition (ASR) systems. In this paper, we propose a novel feature extraction algorithm, perceptual-MVDR (PMVDR), which computes cepstral coefficients from the speech signal. This new feature representation is shown to better model the speech spectrum compared to traditional feature extraction appr...

متن کامل

An Information-Theoretic Discussion of Convolutional Bottleneck Features for Robust Speech Recognition

Convolutional Neural Networks (CNNs) have been shown their performance in speech recognition systems for extracting features, and also acoustic modeling. In addition, CNNs have been used for robust speech recognition and competitive results have been reported. Convolutive Bottleneck Network (CBN) is a kind of CNNs which has a bottleneck layer among its fully connected layers. The bottleneck fea...

متن کامل

Robust Iris Recognition in Unconstrained Environments

A biometric system provides automatic identification of an individual based on a unique feature or characteristic possessed by him/her. Iris recognition (IR) is known to be the most reliable and accurate biometric identification system. The iris recognition system (IRS) consists of an automatic segmentation mechanism which is based on the Hough transform (HT). This paper presents a robust IRS i...

متن کامل

Robust automatic speech recognition for accented Mandarin in car environments

This paper addresses the issues of robust automatic speech recognition (ASR) for accented Mandarin in car environments. A robust front-end is proposed, which adopts a Minimum Mean-Square Error (MMSE) estimator to suppress the background noise in frequency domain, and then implements spectrum smoothing both in time and frequency index to compensate those spectrum components distorted by the nois...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001